
CS106B
Spring 2013

Handout #13
April 29, 2013

Section Handout 4

Problem One: CHeMoWIZrDy
Some words in the English language can be spelled out using just element symbols from the Periodic
Table. For example, the word “began” can be spelled out as BeGaN (beryllium, gallium, nitrogen), and
the word “feline” can be spelled out as FeLiNe (iron, lithium, neon). Not all words have this prop-
erty, though; the word “interesting” cannot be made out of element letters, nor can the word “chem-
istry” (though, interestingly, the word “physics” can be made as PHYSICS (phosphorous, hydrogen,
yttrium, sulfur, iodine carbon, sulfur)

Suppose that you are given a Lexicon containing all the element symbols in the periodic table. Write
a function

bool isElementSpellable(string text, Lexicon& symbols);

that accepts as input a string, then returns whether that string can be written using only element sym-
bols. If you'd like, you can use the fact that all element symbols are at most three letters.

Problem Two: Big-O Notation
Below is a simple function that computes the value of mn when n is a nonnegative integer:

int raiseToPower(int m, int n) {
 int result = 1;
 for (int i = 0; i < n; i++) {
 result *= m;
 }
 return result;
}

i. What is the big-O complexity of the above function, written in terms of m and n? You can as-
sume that it takes the same amount of time to multiply together any two numbers.

ii. If it takes 1μs to compute raiseToPower(100, 200), about how long will it take to compute
raiseToPower(50, 400)?

Below is a recursive function that computes the value of mn when n is a nonnegative integer:

int raiseToPower(int m, int n) {
 if (n == 0) return 1;

 return m * raiseToPower(m, n – 1);
}

iii. What is the big-O complexity of the above function, written in terms of m and n? You can as-
sume that it takes the same amount of time to multiply together any two numbers.

iv. If it takes 1μs to compute raiseToPower(100, 200), about how long will it take to compute
raiseToPower(50, 400)? Why can't you give an exact value for the runtime?

- 1 -

It turns out that there is a much faster way to compute mn when n is a nonnegative integer. The idea is
to modify the recursive step as follows.

• If n is an even number, then we can write as n = 2k. Then mn
=m2 k

=(mk
)

2

• If n is an odd number, then we can write n = 2k + 1. Then mn
=m2k +1

=m⋅(m2 k
)=m⋅(mk

)
2

Based on this observation, we can write this recursive function:

int raiseToPower(int m, int n) {
 if (n == 0) return 1;

 if (n % 2 == 0) {
 int z = raiseToPower(m, n / 2);

 return z * z;
 } else {

 int z = raiseToPower(m, n / 2);
 return m * z * z;
 }

}

v. What is the big-O complexity of the above function, written in terms of m and n? You can as-
sume that it takes the same amount of time to multiply together any two numbers.

vi. If it takes 1μs to compute raiseToPower(100, 100), about how long will it take to compute
raiseToPower(50, 10000)?

vii. (Challenge problem, if you have the time) What happens to the big-O time complexity if you re-
write the function in the following way?

int raiseToPower(int m, int n) {
 if (n == 0) return 1;

 if (n % 2 == 0) {
 return raiseToPower(m, n / 2) * raiseToPower(m, n / 2);

 } else {
 return m * raiseToPower(m, n / 2) * raiseToPower(m, n / 2);

 }
}

- 2 -

